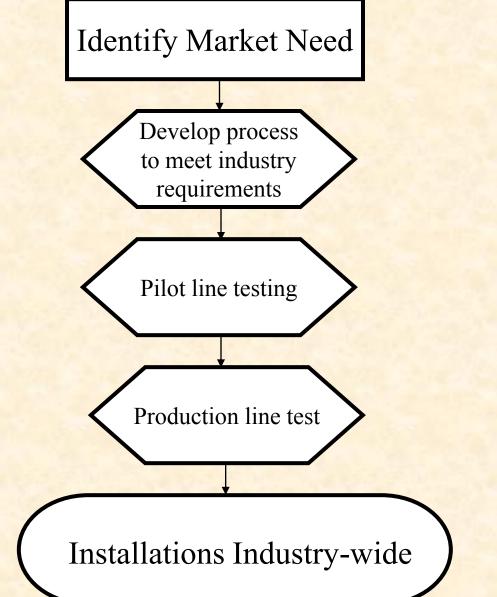
Asian Steel Packaging Conference October 24 – 26, 2007

Pilot Line Testing of a New, High-Speed Sulfate-Based Tinplate Process


George A. Federman Vice President, Process Development Technic Inc. Advanced Technology Division 111 East Ames Court, Plainview, NY 11731

Technistan TP Process Development Chart

Tinplate Industry Needs

- Lower cost tinplate process.
- Reduced environmental burden.
- Increased operating windows.

Development of the Process Presented in 2004

20 g/l Sn⁺²

- Process components:
 - Tin Sulfate:
 - $H_2 SO_4$: 50 ml/l
 - Technistan TP Additive: 50 ml/l
 - Technistan Antioxidant: 20 ml/l
- Current Density Range (CDR) Testing:
 - Hull Cell: $0 12 a/dm^2$
 - Rotating Cathode @ 80 mpm: $10 40 a/dm^2$
- Deposit Uniformity on CDR Test Vehicles:
 - Visually uniform deposit under both forms of CDR testing
 - Uniform deposit morphology @ 2000X by SEM analysis

Development of the Process Presented in 2004

- Fe⁺² Contamination Effects:
 - No effect on current density range
 - No effect on Sn⁺⁴ generation rate
- Sn⁺⁴ Generation Rate in a Nippon Steel Tin Dissolution System Pilot Line:
 - -4% of anode weight with 20 g/l Fe⁺²
 - 14% and 18% rates with MSA and PSA, respectively
- Cathode Efficiency:
 - 95+% under tinplate current density range
- Cost:

- Projected to be at least 30% lower than MSA processes.

Pilot Line Testing 2004 to Present

- Tinplate Industry Pilot Lines:
 - Flow Cell/Rotating Cathode Machines
 - 30-40 meter plating lines with in-line reflow furnaces
 - Very few in number
 - Operate at relatively low line speeds: 10 –100 mpm
 - Limited amount of actual plating time, so the plating bath is not tested for durability.
- Alternative "Pilot" Lines:
 - Copper Wire Tinning Lines
 - Copper Strip Tinning Lines with In-line Reflow
 - These lines are production lines, and solution durability is absolutely critical.

Neumann High Speed (900 mpm) Wire Line

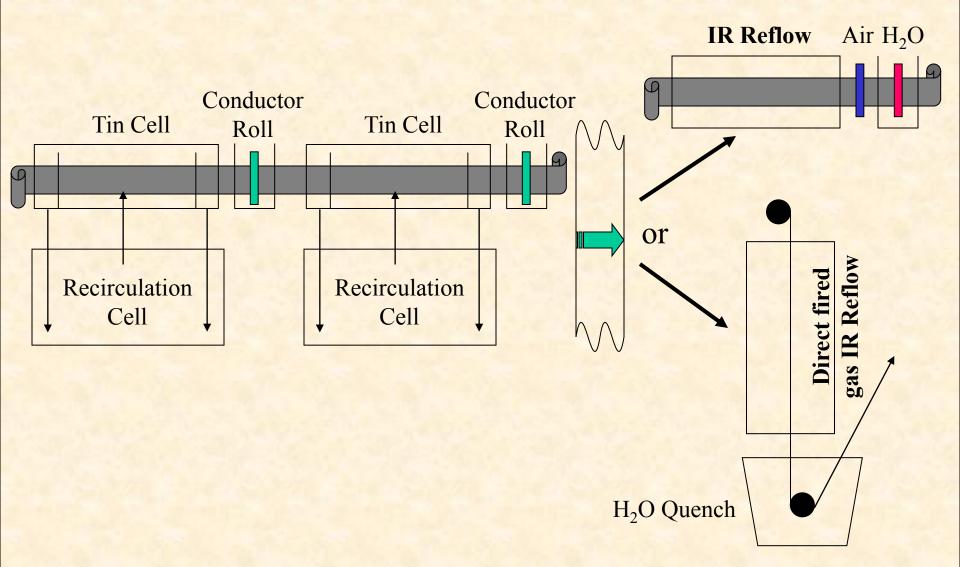
Wire Line Operating Parameters

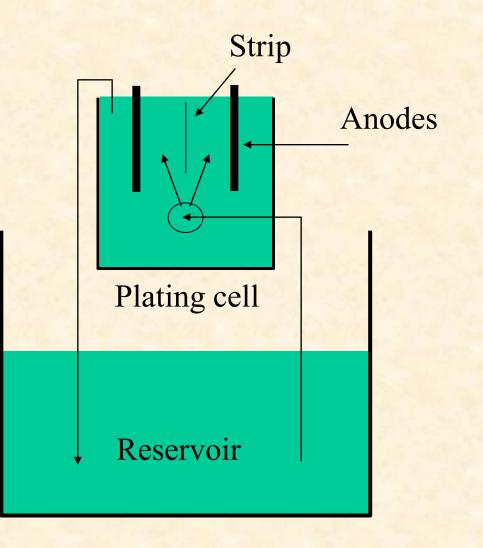
Range			
Sulfate Based	MSA Based		
15 – 50 g/l	50 – 100 g/l		
30 – 70 ml/l	50 – 150 ml/l		
30 – 80 ml/l	50 – 150 ml/l		
10 – 30 ml/l	10 – 30 ml/1		
35 - 55°C	35 - 55°C		
95% or higher	95% or higher		
200 – 1200 mpm			
4000 - 10,000			
$10 - 80 \text{ a/dm}^2$			
$20 - 100 \text{ g/m}^2$			
	Sulfate Based 15 - 50 g/l 30 - 70 ml/l 30 - 80 ml/l 10 - 30 ml/l $35 - 55^{\circ}\text{C}$ 95% or higher 200 - 12 4000 - 10 - 80		

Wire Line Similarities/Differences

- Similarities to a Tinplate Line
 - Line speeds and current densities
 - Tin concentration for sulfate based process
 - Use of insoluble balancing anodes
 - Concern about tin sludge and tin dust
 - Concern about tin deposit morphology
 - Concern about process "running cost"
- Differences from a Tinplate Line
 - Deposit thickness
 - No reflow requirement
 - Deposit visual uniformity is not important

Wire Line History Technistan TP


- 20+ wire lines are now running with the tin sulfate process. Oldest installation is from December 2004.
- Tin deposit is "brighter" than competitors' baths running MSA processes at all production current densities.
- At least 50% reduction in Sn⁺⁴ generation compared to MSA processes: $\leq 0.5\%$ of the installed tin anode weight
- 35 40% reduction in "running costs" for the chemical components. Not factored in is cost reduction in tin dragout.
- No wire customer has gone back to operating his former process after converting to the Technistan TP process.


Copper Strip Plating Lines

- Standard plating line layout (rinses omitted):
 Clean → Pickle → Tinplate → Neutralize → Flux → Reflow → Quench → Dry → Recoil
- Product is used for automotive connector stock.
- Multiple tin plating tanks are used. Lines are usually 40 to 50 meters long.
- Reflow is by IR lamps (strip in horizontal position) or by direct gas fired IR (strip in vertical position). IR lamps use a combination air/water quench. Direct gas fired IR reflow lines use a standard water quench.

Copper Strip Line Schematic Side View: Tin & Reflow Sections

Schematic of Copper Strip Line Cell End View

Copper Strip Line Operating Parameters

Operating Parameter	Range		
Plating Process	Sulfate Based		
Sn ⁺²	20 - 35g/1		
Acid	30 – 70 ml/l		
Additive	30 – 80 ml/l		
Antioxidant	10 – 30 ml/l		
Flux (Cl ⁻ based)	0.5 – 1.5% v/v		
Temperature	35 - 50°C		
Cathode Efficiency	95% or higher		
Line Conditions			
Strip Width	10 – 400 mm		
Line Speed	15 – 30 mpm		
Rectifier Amperage	300 - 600		
Current Density	$4 - 10 \text{ a/dm}^2$		
Plating Thickness	$5.8 - 18 \text{ g/m}^2$		

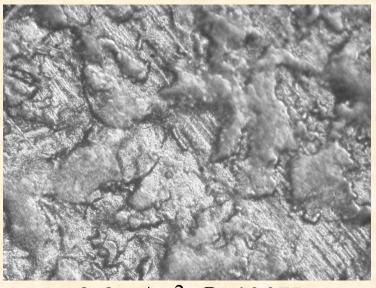
Copper Strip Line Similarities/Differences

- Similarities:
 - Tin concentrations
 - Strip is sufficiently wide to see current density effects
 - Coating weights
 - Type of flux used
 - Reflowed deposit
- Differences
 - Line speeds
 - Current Densities
 - No woodgrain is possible
 - No contamination of Fe in the electrolyte

Copper Strip Line History

- 4 lines installed, with the oldest operating 16 months.
 5th line to be installed in October 2006.
- Uniform, mirror bright deposits after reflow. Uniform matte deposit appearance before reflow.
- Additive stability is excellent: 3X less consumption than 2 competitors.
- Analysis of the Additive is by surface tension. Easy to maintain proper bath conditions.
- No reason why the substrate must be copper based. Steel substrates have been run on these lines in the past, and therefore, a trial run of blackplate with the tin sulfate process was arranged with a US tinplate producer.

Blackplate/Tinplate Trial


- 2 commercial blackplate coils were slit to 254 mm width and 1 tonne weights:
 - Coil 1: 0.33 mm thick with a blast finish
 - Coil 2: 0.21 mm thick with a Grade C finish
- Production Plan:
 - Coil 1: plate matte deposits at 2.8, 5.6, and 8.4 g/m2.
 Deposit was left in the matte state to evaluate coating uniformity.
 - Coil 2: plate and reflow 2.8 g/m2 deposits. Reflow was the direct gas fired IR with a water quench.
 - Send both coils back to US tinplate producer for evaluation

Blackplate/Tinplate Trial Details

• Coil 1

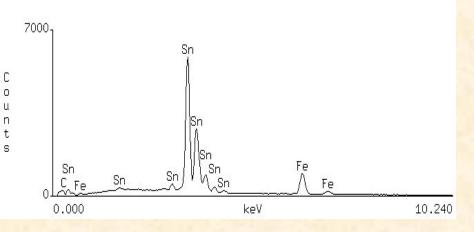
- Line Speed: 11.6 mpm
- Current Density: 3.6 a/dm²
 - 3 cells used for 8.4 g/m²
 - 2 cells used for 5.6 g/m²
 - 1 cell used for 2.8 g/m²

2.8 g/m² @ 400X

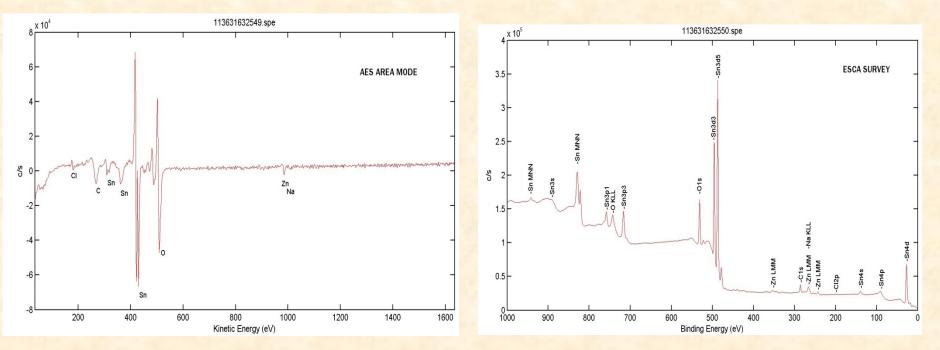
Tin deposit was uniform in appearance across the web.



Blackplate/Tinplate Trial Details


• Coil 2

- Line Speed: 16 mpm
- Current Density: 6 a/dm²
- Only one plating cell was used.
- Reflowed strip had a uniform, bright appearance that looked identical to commercial 2.8 g/m² tinplate.
- Both coils were sent back to the tinplate producer for further evaluation: SEM, EDX, Auger, and ESCA.



250X SEM

EDS Spectra

ESCA Spectra

Auger

High Speed Flow Cell Pilot Line

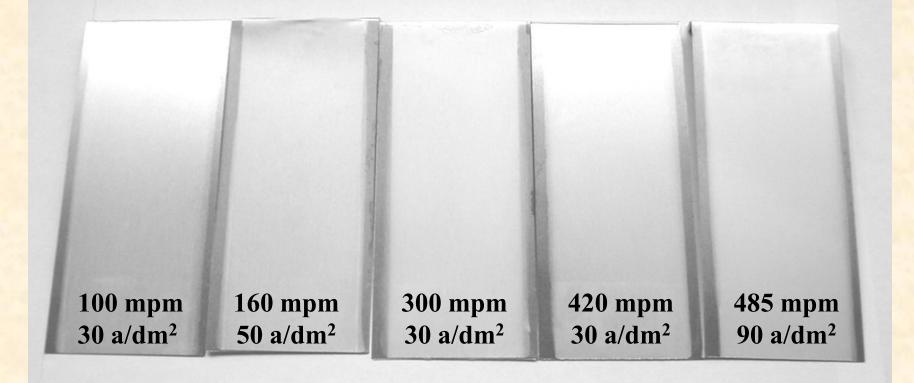
- US Tinplate Producer's High Speed Flow Cell:
 - Simulates line speeds from 30 mpm to 950 mpm
 - Rectification runs by coulomb set, eliminating false current densities because of rectifier ramping.
 - Test panels are cut from commercial blackplate and are
 133 mm long by 55 mm wide
- Conduction Reflow Unit
 - After plating, the panels are connected to a conduction reflow unit with an integrated water quench.
- Target Plating Thickness: 2.8 g/m²

Flow Cell Chemistry

Operating Parameters	Bath 1 Bath 2		
Sn ⁺²	20 g/l		
Fe ⁺²	0 20 g/l		
H ₂ SO ₄	50 ml/l		
Additive	50 ml/l		
Antioxidant	50 ml/l		
Temperature	50 C		

Test Matrix

Line Speed	Current Density (a/dm ²)			
(mpm)	10	30	50	90
100	X	X		
160	Х	Х	Х	
300	Х	X	Х	
420		X	Х	
485		Х	Х	Х

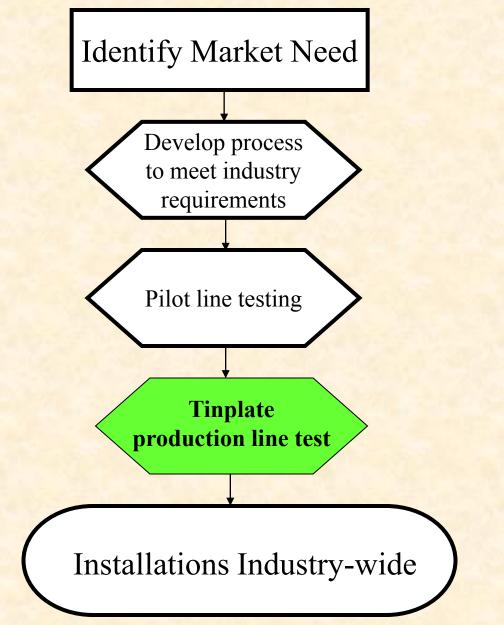


Flow Cell Pilot Line Test Results

- Panels plated at all current densities and line speeds show a uniform appearance, with virtually no color change.
- Iron contaminated bath performed the same as the noncontaminated bath. No difference in current density performance or coating appearance.
- No burning (dendritic deposit morphology) was observed on any of the panels, including the panels plated at 90 a/dm2.
- Reflowed panels were bright and uniform in appearance. NO WOODGRAIN, even though the panels were not fluxed.

Representative Panels from Flow Cell Test

10 a/dm² Effect


- Panels plated at 10 a/dm² showed approximately 50% cathode efficiency (1.4 g/m² coating weights). Cathode efficiencies at all other current densities were close to 100%.
- Production experience on the copper strip lines show cathode efficiencies at 5 to 10 a/dm² are close to 100%. Plating has also been done at this current density on wire lines with no loss in cathode efficiency.
- We believe the problem lies with the increased conductivity of the tin sulfate bath. The bath is approximately 30% more conductive than an MSA process, and 50% more conductive than a PSA process. The high conductivity results in very low voltage at the 10 a/dm² condition in the flow cell. The voltage is so low that tin overvoltage (voltage that must be reached before tin plating occurs) is a significant fraction of the system voltage.

Conclusion

- The Technistan TP process is a production proven process in the wire and copper strip plating industry. The lines used in these industries can be considered "pilot lines" by the tinplate industry.
- The Technistan TP process has been proven superior to other processes by the wire and copper strip industries for:
 - Process durability
 - Uniformity of visual appearance across the usable current density range for both matte and reflowed finishes
 - Reduced stannic tin generation
- Flow cell pilot line testing shows the process has an exceptionally wide current density range with a uniform deposit appearance. Iron has no effect on the process.

Technistan TP Process Development Chart

