Advanced Engineered Solutions A Global Leader in

Specialty Chemicals Surface Finishing Equipment Engineered Powders Analytical Controls

Customer Requirements for Nickel Plating

Chelsea Edmonds Lynne Michaelson

Introduction

Corrosion Resistance

Barrier Deposit

Mechanical & Physical Properties

Why Nickel?

Leveling Deposit

Strength & Elongation

Brightness

Nickel Deposition

Electroplating = Current Source

- ✓ Overall Faster Deposition
- ✓ Highest Throughput

Electroless = Chemical Rxns

- ✓ Can plate electrically isolated and non-conductive parts
- Can achieve greater uniformity

Nickel Electrodeposition

With Current Flow:
➢ Ni metal anode dissociates into Ni⁺⁺
➢ Ni⁺⁺ + 2 e⁻ = Ni metal at cathode
➢ Ni⁺⁺ replenished by anode

Cathode Current Efficiency = (Exp't wt. gain / theor. wt.)*100 Anode Current Efficiency = (Anode wt. loss / theor. loss)*100

Cathode Eff. < Anode Eff.

- Increasing Ni⁺⁺
- Increasing pH

1Ni⁺⁺ offset by drag out pH requires constant adjustment

Anodes

Function:

- Conduct & Distribute Current Uniformly
- Soluble anode replaces Ni ions

Types : Inert vs. Soluble

Soluble = Pure Grade & Activated Sulfur

Activated sulfur required in chloride & bromide free solutions

Inert = mixed metal oxide, platinum

Position :

- Anodes should be a little shorter and positioned away from the edge of the plating rack.
- Soluble anode bars dissolve bottom up, giving poor thickness distribution from top to bottom.

Typical bath components for Ni Electroplating

- Nickel ion source : Nickel Sulfate, Nickel Sulfamate
- Sol'n Conductivity & anode dissolution : NiCl, NiBr
- Buffer / pH control : Boric Acid*
- Grain Refiner / stress reducer : Carriers (aromatic organic sulfur compounds)
- Ductility & Leveling : Brighteners (low conc. Consumed by electrolysis)
- Anti-Pitting Agents : Wetting Agents that lower surface tension

* Boric acid is on the candidate list for substance of very high concern (SVHC) so new formulations are being developed to eliminate boric acid.

Types of Ni Electroplating

Barrel Plating

- Components tumble freely without nesting or locking together
- Barrel loading should be <50% of barrel volume
- Carrier = high, Brightener/Leveler = low
- Mesh size of barrel as large as possible

Rack Plating

- Parts are loaded into racks and held in place
- Rack makes electrical contact with part design of contact points is critical
- Quality of plating impacted by arrangement of rack in plating tank; i.e. anode to cathode spacing, solution flow, etc.

Application of Different Ni Baths

Watts Nickel Bath Formulation By Professor Oliver P. Watts in 1916

	Operating Paramet	ers	
2	Nickel Sulfate	35.0 to 45.0 oz./gal	
	Nickel Chloride	6.0 to 12.0 oz./gal	
	Boric Acid	4.0 to 6.0 oz./gal	
-	рН	3.5 to 4.5	120
	Temp.	40° - 60° C	
	Current Density	20 to 70 ASF	

Decorative & Functional Products

Wood's Nickel Strike Formulation

Operating F	Parameters
--------------------	------------

Nickel Chloride	10.0 to 20.0 oz./gal
Hydrochloric Acid	5.0% to 15.0% by volume
Temp.	RT
Current Density	voltage enough to cause gassing

Activation of nickel and nickel alloys such as Inconel and stainless steel

Sulfamate Nickel Formulation

Operating Parameters		
Nickel Sulfamate	8.0 to 12.0 oz./gal	
Nickel Bromide	1.0 to 1.5 oz./gal	
Boric Acid	3.0 to 5.0 oz./gal	
 рН	3.0 to 4.5	

Functional and electroforming due to low stress

Stress

Develops from electro crystallization and/or the codeposition of impurities

Compressive Stress Blisters: Deposit expands

Watts Nickel Solution w/o additives = 125 to 185 MPa Tensile (Sulfamate Ni Solutions can have lower stress)

Sulfur-containing organic additives (saccharin), carriers, & secondary's help form compressively stressed Ni deposits

Impurities Introduced into Plating Baths

- Insoluble : Dust abrasives and anode fines that cause roughness
- Metallic: Parts dropped into the tanks, drag in from chemistries upstream, leaching agents from resist and rack coatings

Can be observed on hull cell panels as a dark cloudy haze starting from the low current density areas

 Organic: Oil and grease dragged in from the cleaner or not cleaned off in the first place

Can be observed on hull cell panels as a cloudy light colored haze starting from the low current density areas.

Purification Procedures

- Continuous filtration to minimize roughness.
- Low current density electrolysis.
- High pH treatments to help precipitate iron, aluminum and silicon at a pH of 5.0 to 5.5.
- Removal of organics by using activated carbon.
- Hydrogen peroxide or potassium permanganate can be used to help with the carbon treatment.

Leveling & Brightness

Leveling: What? plated metal preferentially fills in defects & scratches on the surface

How? Organic additives in plating sol'n adsorb on micropeaks limiting current flow while increasing current density in microgrooves

Nickel Plating Handbook 2014, p.12

Brightness: Combination of leveling, grain refining, and crystal growth.

(a) Diffuse Reflection

(b) Specular Reflection

Modern Electroplating, p.13

Engineering & Functional Testing

Thickness testing:

- Microscopic examination of cross sections.
- Kocour de-plate
- o Beta Backscatter
- XRF X-ray Fluorescence
- Weight gain per the measured surface area

Adhesion testing:

- Bending, twisting, and tape testing.
- Thermal shock, for steel 300° C and zinc alloys 150° C and quench.

Engineering Properties

Ductility: Ability of a plated deposit to undergo deformation without cracking

Test: 1 mil Ni deposit on Cu foil. Bend 180° over a 12 um mandrel and look for cracks down to base material

- Additive free deposits have elongation ~30%
- Semi bright deposit have elongation ~8%

Corrosion: Corrosion resistance may depend on deposit thickness

Test: Salt Spray box, Fuming Nitric Test in Desiccator

- > 5 um for use under gold & other coatings
- ~125 um for severe applications; i.e. bumpers & auto wheels

Thank you

